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Problems 42-47 are devoted to multipole radiation, bremsstrahlung, synchrotron radiation, and radi-
ation from a free-electron laser.

42.
Working in the far zone r′ � λ � r, con-
sider azimuthally symmetric (m = 0) electric
quadrupole (E20) radiation. At a particular an-
gular frequency ω, work with the complex fields
�̃B(�r) and �̃E(�r) defined by

�B(�r, t) ≡ Re
( �̃B(�r)e−iωt

)

�E(�r, t) ≡ Re
(�̃E(�r)e−iωt

)
.

For E-type radiation, the magnetic field �̃B (⊥ r̂)
is proportional to the vector spherical harmonic
�X:

�̃B ∝ �X20(θ, φ) ≡ �LY20(θ, φ) ,

with i�L ≡ �r ×∇ . Use the fact that

�̃E ≈ c�̃B × r̂

in the far zone. Obtain a function f(θ, φ) such
that the radiated power P in the far zone is
proportional to it:

dP

dΩ
∝ f(θ, φ) .

43.
At t = 0, charges +e lie on the top right and
bottom left corners of a square of side b in the
xy plane that is centered at the origin; charges
−e lie on the top left and bottom right corners.
(a.)
Determine the lowest-l nonvanishing electro-
static multipole moment(s) of the charge dis-
tribution.
(b.)
The static charge distribution in (a.) now is set
into oscillation: as time advances, the position
vector of each charge is multiplied by the same
factor 1 + ε cosωt, where ω and 0 < ε � 1 are
real constants. (Note that the charges do not

move in a circle.) Using the fact that a static
electric multipole corresponding to a given l and
m, when caused to oscillate, yields E-type (TM)
multipole radiation of the same l and m, what
type(s) of radiation (e.g. E10) is (are) emitted?
(c.)
Using the facts introduced in the previous prob-
lem, but generalizing them to the spherical har-
monic(s) appropriate here, obtain a function
f(θ, φ) such that the radiated power P in the far
zone b � 2πc

ω � r is proportional to it:

dP

dΩ
∝ f(θ, φ) .

At how many points on the unit sphere (e.g. the
north pole) does this radiation pattern vanish?

44.
Griffiths Problem 11.15.

45.
Start from the expression derived in class for the
energy radiated by an accelerating point charge
per steradian per unit of retarded time t′:

dW

dΩ dt′
=

( q

4πε0

)2 ε0
c

∣∣R̂ × [
(R̂ − �β) × �̇

β
]∣∣2

(1 − R̂ · �β)5
.

Consider synchrotron radiation by a particle of
charge q moving in a circular orbit of radius b in
a coordinate system where

β̂ = ẑ

ˆ̇
β = x̂ ,

i.e. x̂ points toward the center of the circle and
ẑ points along its circumference in the particle’s
direction of motion. Define

R̂ ≡ (nx, ny, nz) ,
1



where n̂ is a unit vector extending from the par-
ticle in an arbitrary direction towards which an
element of radiation is emitted.
(a.)

Show that

R̂ × [
(R̂ − �β) × ˆ̇

β
]

= n̂nx − x̂− βn̂× ŷ .

(b.)
Using this result, show that

∣∣R̂×[
(R̂−�β)× ˆ̇

β
]∣∣2 = 1−2βnz +β2n2

z−(1−β2)n2
x

(c.)
Consider a set of spherical polar coordinates cen-
tered at the particle (not at the center of the
beam circle). Taking θ to be the polar angle of
n̂ relative to ẑ, and φ to be its azimuth about ẑ,
express nx and nz in terms of θ and φ.
(d.)
Using the results of (b.) and (c.), show that

dW

dΩ dt′
=

( q

4πε0

)2 ε0
c
×

× β̇2

(1 − β cos θ)3
(
1 − sin2 θ cos2 φ

γ2(1 − β cos θ)2
)
.

46.
Consider the result of the previous problem in
the relativistic limit γ 
 1. In that limit, the
nonnegligible part of the total radiation that is
emitted occurs at polar angles θ such that γθ is
of order unity.
(a.)
Approximating cos θ and sin θ to lowest nonva-
nishing order in θ, perform the integration over
dΩ = d(cos θ) dφ, integrating by parts where
necessary, to show that

4πε0
dW

dt′
=

2
3c3

(qβ̇c)2γ4 .

[Note that (qβ̇c)2 is equivalent to p̈2, where p is
the electric dipole moment of the point charge
relative to the origin. Therefore this result is the
same as the (nonrelativistic) Larmor formula,
except for the additional factor γ4.]

(b.)
In terms of the |momentum| P of the point
charge and its rest mass m, show that

4πε0
dW

dt′
=

2q2

3c3
P 4

m4b2
,

and thus that the power lost to synchrotron ra-
diation depends on the fourth power of P , the
inverse fourth power of m (making it usually
negligible for all but electrons), and the inverse
square of b.
(c.)
Suppose that you use an electron synchrotron
that taxpayers can afford. It circulates highly
relativistic electrons with β ≈ 1. You want to
build a new synchrotron with the same beam
current, the same power lost to synchrotron ra-
diation, but twice the beam momentum. Show
that the radius b of the new synchrotron must
increase by a factor of 16.

47.
A free-electron laser consists of a beam of elec-
trons (with constant velocity βc) passing through
a structure known as a wiggler or undulator.
(These structures are used also in sections of a
circular electron synchrotron such as the ALS.)
Take the beam direction to be ẑ. Consider an al-
ternating set of magnets (for compactness, these
are often permanent magnets, made of samarium
cobalt as developed at LBL by the late Klaus
Halbach). With a full period ∆z, they produce
a strong magnetic field that points alternately in
the +x̂ and −x̂ directions.
(a.)
In the rest frame S ′ of the electron, with what
fundamental angular frequency ω′ does the mag-
netic field from the wiggler appear to oscillate?
(b.)
In S ′, the oscillating electron produces elec-
tromagnetic radiation with angular frequency
ω′. Applying the relativistic Doppler shift to
(“forward”) radiation emitted along the beam
direction, what angular frequency ω does that
radiation have in the laboratory frame?
(c.)
Express λ, the wavelength of the forward radia-
tion, as a multiple of ∆z.
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(d.)
At LBL’s ALS, using an alternating set of mag-
nets with ∆z = 10 cm, an experimenter wishes
to study the effect upon condensed-matter sam-
ples of a soft X-ray beam of wavelength 5 nm.
Use this information to estimate the ALS beam
energy (in GeV).
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